Stability of the Focal and Geometric Index in Semi-riemannian Geometry via the Maslov Index

نویسنده

  • FRANCESCO MERCURI
چکیده

We investigate the problem of the stability of the number of conjugate or focal points (counted with multiplicity) along a semi-Riemannian geodesic γ. For a Riemannian or a non spacelike Lorentzian geodesic, such number is equal to the intersection number (Maslov index) of a continuous curve with a subvariety of codimension one of the Lagrangian Grassmannian of a symplectic space. Such intersection number is proven to be stable in a large variety of circumstances. In the general semi-Riemannian case, under suitable hypotheses this number is equal to an algebraic count of the multiplicities of the conjugate points, and it is related to the spectral properties of a non self-adjoint differential operator. This last relation gives a weak extension of the classical Morse Index Theorem in Riemannian and Lorentzian geometry. Date: March 1999. 1991 Mathematics Subject Classification. 34B24, 34L05, 53C22, 53C50, 53C80. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the Conjugate Index, Degenerate Conjugate Points and the Maslov Index in Semi-riemannian Geometry

We investigate the problem of the stability of the number of conjugate or focal points (counted with multiplicity) along a semi-Riemannian geodesic γ. For a Riemannian or a nonspacelike Lorentzian geodesic, such number is equal to the intersection number (Maslov index) of a continuous curve with a subvariety of codimension one of the Lagrangian Grassmannian of a symplectic space. In the general...

متن کامل

The Morse Index Theorem in Semi-riemannian Geometry

We prove a semi-Riemannian version of the celebrated Morse Index Theorem for geodesics in semi-Riemannian manifolds; we consider the general case of both endpoints variable on two submanifolds. The key role of the theory is played by the notion of the Maslov index of a semi-Riemannian geodesic, which is a homological invariant and it substitutes the notion of geometric index in Riemannian geome...

متن کامل

An Index Theorem for Non Periodic Solutions of Hamiltonian Systems

We consider a Hamiltonian setup (M, ω,H,L,Γ,P), where (M, ω) is a symplectic manifold, L is a distribution of Lagrangian subspaces in M, P a Lagrangian submanifold of M, H is a smooth time dependent Hamiltonian function on M and Γ : [a, b] 7→ M is an integral curve of the Hamiltonian flow ~ H starting at P . We do not require any convexity property of the Hamiltonian function H . Under the assu...

متن کامل

A Generalized Index Theorem for Morse-sturm Systems and Applications to Semi-riemannian Geometry

We prove an extension of the Index Theorem for Morse–Sturm systems of the form −V ′′ + RV = 0, where R is symmetric with respect to a (non positive) symmetric bilinear form, and thus the corresponding differential operator is not self-adjoint. The result is then applied to the case of a Jacobi equation along a geodesic in a Lorentzian manifold, obtaining an extension of the Morse Index Theorem ...

متن کامل

On the Maslov Index of Symplectic Paths That Are Not Transversal to the Maslov Cycle. Semi-riemannian Index Theorems in the Degenerate Case

The Maslov index of a symplectic path, under a certain transversality assumption, is given by an algebraic count of the intersections of the path with a subvariety of the Lagrangian Grassmannian called the Maslov cycle. In these notes we use the notion of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to determine a formula for the computation of the Maslo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999